Files
bgp/crates/bgp_packet/src/capabilities.rs
Rayhaan Jaufeerally b0f2995ed8
Some checks failed
Rust / build (push) Has been cancelled
Cleanup clippy warnings.
2024-12-08 22:09:00 +00:00

738 lines
26 KiB
Rust

// Copyright 2021 Rayhaan Jaufeerally.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
use crate::constants::AddressFamilyIdentifier;
use crate::constants::SubsequentAddressFamilyIdentifier;
use crate::traits::BGPParserError;
use crate::traits::ParserContext;
use crate::traits::ReadablePacket;
use crate::traits::WritablePacket;
use byteorder::{ByteOrder, NetworkEndian};
use nom::number::complete::{be_u16, be_u8};
use nom::Err::Failure;
use nom::IResult;
use std::fmt;
use std::fmt::Display;
/// BGPOpenOptionType represents the option types in the Open message.
#[derive(PartialEq, Eq, PartialOrd, Ord, Clone, Copy, Debug, Hash)]
pub struct BGPOpenOptionType(pub u8);
impl BGPOpenOptionType {
pub fn new(val: u8) -> BGPOpenOptionType {
BGPOpenOptionType(val)
}
}
impl From<BGPOpenOptionType> for u8 {
fn from(val: BGPOpenOptionType) -> Self {
val.0
}
}
#[allow(non_snake_case)]
#[allow(non_upper_case_globals)]
pub mod BGPOpenOptionTypeValues {
use super::BGPOpenOptionType;
pub const CAPABILITIES: BGPOpenOptionType = BGPOpenOptionType(2);
}
#[derive(Debug, PartialEq)]
pub struct OpenOption {
pub option_type: BGPOpenOptionType,
pub oval: OpenOptions,
}
impl ReadablePacket for OpenOption {
fn from_wire<'a>(
ctx: &ParserContext,
buf: &'a [u8],
) -> IResult<&'a [u8], OpenOption, BGPParserError<&'a [u8]>> {
let (buf, typ) = nom::combinator::complete(be_u8)(buf)?;
let (buf, val) = match BGPOpenOptionType(typ) {
BGPOpenOptionTypeValues::CAPABILITIES => {
let (b, cap) = OpenOptionCapabilities::from_wire(ctx, buf)?;
(b, OpenOptions::Capabilities(cap))
}
_ => {
// TODO: This should gracefully degrrrrade and not fail the parser.
return Err(Failure(BGPParserError::CustomText(
"Unknown BGP OPEN option".to_string(),
)));
}
};
IResult::Ok((
buf,
OpenOption {
option_type: BGPOpenOptionType(typ),
oval: val,
},
))
}
}
impl WritablePacket for OpenOption {
fn to_wire(&self, ctx: &ParserContext) -> Result<Vec<u8>, &'static str> {
let mut buf = Vec::new();
match &self.oval {
OpenOptions::Capabilities(c) => {
buf.push(BGPOpenOptionTypeValues::CAPABILITIES.into());
buf.append(&mut c.to_wire(ctx)?);
}
}
Ok(buf)
}
fn wire_len(&self, ctx: &ParserContext) -> Result<u16, &'static str> {
match &self.oval {
OpenOptions::Capabilities(c) => Ok(2 + c.wire_len(ctx)?),
}
}
}
impl Display for OpenOption {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
write!(f, "OpenOption: {}", self.oval)
}
}
#[derive(Debug, PartialEq)]
pub enum OpenOptions {
Capabilities(OpenOptionCapabilities),
}
impl Display for OpenOptions {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
match &self {
OpenOptions::Capabilities(c) => write!(f, "Capabilities: {}", c),
}
}
}
/// CapabilityList represents a list of capabilities which can be present in an OpenOption.
#[derive(Debug, PartialEq)]
pub struct OpenOptionCapabilities {
pub caps: Vec<BGPCapability>,
}
impl ReadablePacket for OpenOptionCapabilities {
// from wire reads the length and value of the TLV.
fn from_wire<'a>(
ctx: &ParserContext,
buf: &'a [u8],
) -> IResult<&'a [u8], OpenOptionCapabilities, BGPParserError<&'a [u8]>> {
let (buf, caps): (_, Vec<BGPCapability>) = nom::multi::length_value(
be_u8,
nom::multi::many0(|i| BGPCapability::from_wire(ctx, i)),
)(buf)?;
IResult::Ok((buf, OpenOptionCapabilities { caps }))
}
}
impl WritablePacket for OpenOptionCapabilities {
// to_wire writes the length and value of the TLV.
fn to_wire(&self, ctx: &ParserContext) -> Result<Vec<u8>, &'static str> {
let mut buf: Vec<u8> = Vec::new();
buf.push(self.wire_len(ctx).unwrap() as u8);
for cap in &self.caps {
let mut result: Vec<u8> = (*cap).to_wire(ctx)?;
buf.append(&mut result);
}
Ok(buf)
}
fn wire_len(&self, ctx: &ParserContext) -> Result<u16, &'static str> {
let mut ttl: u16 = 0;
for cap in &self.caps {
ttl += (*cap).wire_len(ctx)?;
}
Ok(ttl)
}
}
impl Display for OpenOptionCapabilities {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
write!(f, "Capabilities: [")?;
for cap in &self.caps {
std::fmt::Display::fmt(cap, f)?;
}
write!(f, "]")
}
}
/// BGP Capabilities.
#[derive(PartialEq, Eq, PartialOrd, Ord, Clone, Copy, Debug, Hash)]
pub struct BGPCapabilityType(pub u8);
impl BGPCapabilityType {
pub fn new(val: u8) -> BGPCapabilityType {
BGPCapabilityType(val)
}
}
impl From<BGPCapabilityType> for u8 {
fn from(val: BGPCapabilityType) -> Self {
val.0
}
}
#[allow(non_snake_case)]
#[allow(non_upper_case_globals)]
pub mod BGPCapabilityTypeValues {
use super::BGPCapabilityType;
/// Multiprotocol Extensions for BGP-4 [RFC2858]
pub const MULTPROTOCOL_BGP4: BGPCapabilityType = BGPCapabilityType(1);
/// Route Refresh Capability for BGP-4 [RFC2918]
pub const ROUTE_REFRESH_BGP4: BGPCapabilityType = BGPCapabilityType(2);
/// Outbound Route Filtering Capability [RFC5291]
pub const OUTBOUND_ROUTE_FILTERING: BGPCapabilityType = BGPCapabilityType(3);
/// Extended Next Hop Encoding [RFC8950]
pub const EXTENDED_NEXT_HOP: BGPCapabilityType = BGPCapabilityType(5);
/// BGP Extended Message [RFC8654]
pub const EXTENDED_MESSAGE: BGPCapabilityType = BGPCapabilityType(6);
/// BGPsec Capability [RFC8205]
pub const BGPSEC: BGPCapabilityType = BGPCapabilityType(7);
/// Multiple Labels Capability [RFC8277]
pub const MULTILABEL_COMPAT: BGPCapabilityType = BGPCapabilityType(8);
/// Graceful Restart Capability [RFC4724]
pub const GRACEFUL_RESTART: BGPCapabilityType = BGPCapabilityType(64);
/// Support for 4-octet AS number capability [RFC6793]
pub const FOUR_BYTE_ASN: BGPCapabilityType = BGPCapabilityType(65);
/// ADD-PATH Capability [RFC7911]
pub const ADD_PATH: BGPCapabilityType = BGPCapabilityType(69);
/// Enhanced Route Refresh Capability [RFC7313]
pub const ENHANCED_ROUTE_REFRESH: BGPCapabilityType = BGPCapabilityType(70);
}
#[derive(Debug, PartialEq)]
pub struct BGPCapability {
pub cap_type: BGPCapabilityType,
pub val: BGPCapabilityValue,
}
impl ReadablePacket for BGPCapability {
fn from_wire<'a>(
ctx: &ParserContext,
buf: &'a [u8],
) -> IResult<&'a [u8], BGPCapability, BGPParserError<&'a [u8]>> {
let (buf, cap_type) = nom::combinator::peek(be_u8)(buf)?; // Peek the type, if we know it, consume.
let (buf, val): (_, BGPCapabilityValue) =
match BGPCapabilityType(cap_type) {
BGPCapabilityTypeValues::FOUR_BYTE_ASN => {
let (buf, _) = be_u8(buf)?; // Consume type
let (buf, cap) = nom::multi::length_value(be_u8, |i| {
FourByteASNCapability::from_wire(ctx, i)
})(buf)?;
(buf, BGPCapabilityValue::FourByteASN(cap))
}
BGPCapabilityTypeValues::MULTPROTOCOL_BGP4 => {
let (buf, _) = be_u8(buf)?;
let (buf, cap) = nom::multi::length_value(be_u8, |i| {
MultiprotocolCapability::from_wire(ctx, i)
})(buf)?;
(buf, BGPCapabilityValue::Multiprotocol(cap))
}
// TODO: Add extended next hop.
BGPCapabilityTypeValues::ROUTE_REFRESH_BGP4 => {
let (buf, _) = be_u8(buf)?;
let (buf, cap) = nom::multi::length_value(be_u8, |i| {
RouteRefreshCapability::from_wire(ctx, i)
})(buf)?;
(buf, BGPCapabilityValue::RouteRefresh(cap))
}
BGPCapabilityTypeValues::GRACEFUL_RESTART => {
let (buf, _) = be_u8(buf)?;
let (buf, cap) = nom::multi::length_value(be_u8, |i| {
GracefulRestartCapability::from_wire(ctx, i)
})(buf)?;
(buf, BGPCapabilityValue::GracefulRestart(cap))
}
_ => {
// If we do not know what this is, then put the bytes in an UnknownCapability.
let (buf, cap) = UnknownCapability::from_wire(ctx, buf)?;
(buf, BGPCapabilityValue::UnknownCapability(cap))
}
};
IResult::Ok((
buf,
BGPCapability {
cap_type: BGPCapabilityType(cap_type),
val,
},
))
}
}
impl WritablePacket for BGPCapability {
fn to_wire(&self, ctx: &ParserContext) -> Result<Vec<u8>, &'static str> {
let mut buf: Vec<u8> = vec![];
buf.push(self.cap_type.into());
match &self.val {
BGPCapabilityValue::FourByteASN(v) => {
buf.push(v.wire_len(ctx)? as u8);
buf.extend_from_slice(&v.to_wire(ctx)?);
}
BGPCapabilityValue::Multiprotocol(v) => {
buf.push(v.wire_len(ctx)? as u8);
buf.extend_from_slice(&v.to_wire(ctx)?);
}
BGPCapabilityValue::RouteRefresh(v) => {
buf.push(v.wire_len(ctx)? as u8);
buf.extend_from_slice(&v.to_wire(ctx)?);
}
BGPCapabilityValue::GracefulRestart(v) => {
buf.push(v.wire_len(ctx)? as u8);
buf.extend_from_slice(&v.to_wire(ctx)?);
}
BGPCapabilityValue::UnknownCapability(v) => {
buf.push(v.wire_len(ctx)? as u8);
buf.extend_from_slice(&v.to_wire(ctx)?);
}
};
Ok(buf)
}
fn wire_len(&self, ctx: &ParserContext) -> Result<u16, &'static str> {
// BGPCapabilityType(u8) + cap_len(u8) + val
match &self.val {
BGPCapabilityValue::FourByteASN(v) => Ok(2 + v.wire_len(ctx)?),
BGPCapabilityValue::Multiprotocol(v) => Ok(2 + v.wire_len(ctx)?),
BGPCapabilityValue::RouteRefresh(v) => Ok(2 + v.wire_len(ctx)?),
BGPCapabilityValue::GracefulRestart(v) => Ok(2 + v.wire_len(ctx)?),
BGPCapabilityValue::UnknownCapability(v) => Ok(2 + v.wire_len(ctx)?),
}
}
}
impl Display for BGPCapability {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
std::fmt::Display::fmt(&self.val, f)
}
}
#[derive(Clone, Debug, PartialEq)]
pub enum BGPCapabilityValue {
FourByteASN(FourByteASNCapability),
Multiprotocol(MultiprotocolCapability),
RouteRefresh(RouteRefreshCapability),
GracefulRestart(GracefulRestartCapability),
UnknownCapability(UnknownCapability),
}
impl Display for BGPCapabilityValue {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
match &self {
BGPCapabilityValue::FourByteASN(v) => std::fmt::Display::fmt(v, f),
BGPCapabilityValue::Multiprotocol(v) => std::fmt::Display::fmt(v, f),
BGPCapabilityValue::RouteRefresh(v) => std::fmt::Display::fmt(v, f),
BGPCapabilityValue::GracefulRestart(v) => std::fmt::Display::fmt(v, f),
BGPCapabilityValue::UnknownCapability(v) => std::fmt::Display::fmt(v, f),
}
}
}
#[derive(Clone, Debug, PartialEq)]
pub struct UnknownCapability {
cap_code: u8,
payload: Vec<u8>,
}
impl ReadablePacket for UnknownCapability {
fn from_wire<'a>(
_: &ParserContext,
buf: &'a [u8],
) -> IResult<&'a [u8], Self, BGPParserError<&'a [u8]>> {
let (buf, typ) = be_u8(buf)?;
let (buf, len) = be_u8(buf)?;
let (buf, payload) = nom::bytes::complete::take(len)(buf)?;
Ok((
buf,
UnknownCapability {
cap_code: typ,
payload: payload.to_vec(),
},
))
}
}
impl WritablePacket for UnknownCapability {
fn to_wire(&self, _: &ParserContext) -> Result<Vec<u8>, &'static str> {
let mut buf = vec![];
// No need to push the type or length on as that's done at a higher level.
buf.extend(self.payload.to_owned());
Ok(buf)
}
fn wire_len(&self, _: &ParserContext) -> Result<u16, &'static str> {
Ok(self.payload.len() as u16)
}
}
impl Display for UnknownCapability {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
write!(f, "UnknownCapability type: {}", self.cap_code)
}
}
/// FourByteASNCapability represents the four byte BGP Capability value.
#[derive(Clone, Debug, PartialEq)]
pub struct FourByteASNCapability {
pub asn: u32,
}
impl FourByteASNCapability {
fn new(asn: u32) -> FourByteASNCapability {
FourByteASNCapability { asn }
}
}
impl ReadablePacket for FourByteASNCapability {
fn from_wire<'a>(
_: &ParserContext,
buf: &'a [u8],
) -> IResult<&'a [u8], Self, BGPParserError<&'a [u8]>> {
let (buf, asn) = nom::combinator::complete(nom::number::complete::be_u32)(buf)?;
IResult::Ok((buf, FourByteASNCapability::new(asn)))
}
}
impl WritablePacket for FourByteASNCapability {
fn to_wire(&self, _: &ParserContext) -> Result<Vec<u8>, &'static str> {
let mut buf: Vec<u8> = vec![0; 4];
byteorder::NetworkEndian::write_u32(&mut buf, self.asn);
Ok(buf)
}
fn wire_len(&self, _: &ParserContext) -> Result<u16, &'static str> {
Ok(4)
}
}
impl Display for FourByteASNCapability {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
write!(f, "FourByteASN: asn: {}", self.asn)
}
}
/// MultiprotocolExtCapability represents support for RFC 4760.
#[derive(Clone, Debug, PartialEq)]
pub struct MultiprotocolCapability {
pub afi: AddressFamilyIdentifier,
pub safi: SubsequentAddressFamilyIdentifier,
}
impl MultiprotocolCapability {
fn new(
afi: AddressFamilyIdentifier,
safi: SubsequentAddressFamilyIdentifier,
) -> MultiprotocolCapability {
MultiprotocolCapability { afi, safi }
}
}
impl ReadablePacket for MultiprotocolCapability {
fn from_wire<'a>(
ctx: &ParserContext,
buf: &'a [u8],
) -> IResult<&'a [u8], MultiprotocolCapability, BGPParserError<&'a [u8]>> {
let (buf, (afi, _, safi)) = nom::combinator::complete(nom::sequence::tuple((
|i| AddressFamilyIdentifier::from_wire(ctx, i),
nom::bytes::complete::take(1u8),
|i| SubsequentAddressFamilyIdentifier::from_wire(ctx, i),
)))(buf)?;
IResult::Ok((buf, MultiprotocolCapability::new(afi, safi)))
}
}
impl WritablePacket for MultiprotocolCapability {
fn to_wire(&self, _: &ParserContext) -> Result<Vec<u8>, &'static str> {
// [ AFI: uint16, 0: uint8, SAFI: uint8 ]
let mut res = [0u8; 4];
byteorder::NetworkEndian::write_u16(&mut res[..2], self.afi.into());
res[3] = self.safi.into();
Ok(res.to_vec())
}
fn wire_len(&self, _: &ParserContext) -> Result<u16, &'static str> {
Ok(4)
}
}
impl Display for MultiprotocolCapability {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
write!(f, "MultiprotocolCapbility: [ {} {} ]", self.afi, self.safi,)
}
}
// Route refresh capability
#[derive(Clone, Debug, PartialEq)]
pub struct RouteRefreshCapability {}
impl WritablePacket for RouteRefreshCapability {
fn to_wire(&self, _: &ParserContext) -> Result<Vec<u8>, &'static str> {
Ok(vec![])
}
fn wire_len(&self, _: &ParserContext) -> Result<u16, &'static str> {
Ok(0)
}
}
impl ReadablePacket for RouteRefreshCapability {
fn from_wire<'a>(
_: &ParserContext,
buf: &'a [u8],
) -> IResult<&'a [u8], RouteRefreshCapability, BGPParserError<&'a [u8]>> {
IResult::Ok((buf, RouteRefreshCapability {}))
}
}
impl Display for RouteRefreshCapability {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
write!(f, "RouteRefreshCapability")
}
}
// Graceful restart capability
#[derive(Clone, Debug, PartialEq)]
pub struct GracefulRestartCapability {
pub restart_state: bool, // 4 bits total, most sig bit here, rest reserved.
pub restart_time_sec: u16, // 12 bits.
pub payloads: Vec<GracefulRestartPayload>,
}
// GracefulRestartPayload represents the contents of the graceful restart cap.
#[derive(Clone, Debug, PartialEq)]
pub struct GracefulRestartPayload {
pub afi: AddressFamilyIdentifier,
pub safi: SubsequentAddressFamilyIdentifier,
pub af_flags: bool, // 8 bits total, most significant bit used here.
}
impl ReadablePacket for GracefulRestartPayload {
fn from_wire<'a>(
ctx: &ParserContext,
buf: &'a [u8],
) -> IResult<&'a [u8], GracefulRestartPayload, BGPParserError<&'a [u8]>> {
let (buf, (afi, safi, flags)) = nom::combinator::complete(nom::sequence::tuple((
|i| AddressFamilyIdentifier::from_wire(ctx, i),
|i| SubsequentAddressFamilyIdentifier::from_wire(ctx, i),
be_u8,
)))(buf)?;
IResult::Ok((
buf,
GracefulRestartPayload {
afi,
safi,
af_flags: (0x80 & flags) != 0,
},
))
}
}
impl WritablePacket for GracefulRestartPayload {
fn to_wire(&self, _: &ParserContext) -> Result<Vec<u8>, &'static str> {
let afi: u16 = self.afi.into();
let mut res = vec![0u8; 2];
byteorder::NetworkEndian::write_u16(res.as_mut(), afi);
res.push(self.safi.into());
res.push(if self.af_flags { 0x80 } else { 0 });
Ok(res)
}
fn wire_len(&self, _: &ParserContext) -> Result<u16, &'static str> {
Ok(4)
}
}
impl Display for GracefulRestartPayload {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
write!(
f,
"GracefulRestartPayload: [afi:{} safi:{} af_flags:{}]",
self.afi, self.safi, self.af_flags
)
}
}
impl ReadablePacket for GracefulRestartCapability {
fn from_wire<'a>(
ctx: &ParserContext,
buf: &'a [u8],
) -> IResult<&'a [u8], Self, BGPParserError<&'a [u8]>> {
let (buf, state_rt) = nom::combinator::complete(be_u16)(buf)?;
let (buf, payloads): (_, Vec<GracefulRestartPayload>) =
nom::multi::many0(|i| GracefulRestartPayload::from_wire(ctx, i))(buf)?;
let restart_time_sec: u16 = 0x0fff & state_rt; // Lower 14 bits.
let restart_state: bool = (0x8000 & state_rt) != 0; // highest bit
IResult::Ok((
buf,
GracefulRestartCapability {
restart_state,
restart_time_sec,
payloads,
},
))
}
}
impl WritablePacket for GracefulRestartCapability {
fn to_wire(&self, ctx: &ParserContext) -> Result<Vec<u8>, &'static str> {
let mut buf: Vec<u8> = vec![0u8; 2];
let state_rt: u16 = ((self.restart_state as u16) << 15) | (0xfff & self.restart_time_sec);
NetworkEndian::write_u16(&mut buf, state_rt);
for item in &self.payloads {
buf.append(&mut item.to_wire(ctx)?);
}
Ok(buf)
}
fn wire_len(&self, _: &ParserContext) -> Result<u16, &'static str> {
Ok((2 + self.payloads.len() * 4) as u16)
}
}
impl Display for GracefulRestartCapability {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
write!(f, "GracefulRestartCapability: [")?;
for value in &self.payloads {
fmt::Display::fmt(value, f)?;
}
write!(f, " ]")
}
}
// RFC8950 - Advertising IPv4 NLRI with IPv6 next hop.
// GracefulRestartPayload represents the contents of the graceful restart cap.
#[derive(Clone, Debug, PartialEq)]
pub struct ExtendedNextHopEncodingCapability {
pub afi_safi_nhafi: Vec<(
AddressFamilyIdentifier,
SubsequentAddressFamilyIdentifier,
AddressFamilyIdentifier,
)>,
}
impl WritablePacket for ExtendedNextHopEncodingCapability {
fn to_wire(&self, _ctx: &ParserContext) -> Result<Vec<u8>, &'static str> {
Ok(self
.afi_safi_nhafi
.iter()
.flat_map(|e| {
Into::<Vec<u8>>::into(e.0)
.into_iter()
.chain(vec![0x00, Into::<u8>::into(e.1)])
.chain(Into::<Vec<u8>>::into(e.2))
.collect::<Vec<u8>>()
})
.collect::<Vec<u8>>())
}
fn wire_len(&self, _ctx: &ParserContext) -> Result<u16, &'static str> {
Ok((self.afi_safi_nhafi.len() * 6) as u16)
}
}
impl ReadablePacket for ExtendedNextHopEncodingCapability {
fn from_wire<'a>(
ctx: &ParserContext,
buf: &'a [u8],
) -> IResult<&'a [u8], Self, BGPParserError<&'a [u8]>>
where
Self: Sized,
{
let (buf, tuples) = nom::combinator::complete(nom::multi::many0(nom::sequence::tuple((
|i| AddressFamilyIdentifier::from_wire(ctx, i),
|i| {
let (buf, _) = be_u8(i)?; // Eat the 0 byte.
SubsequentAddressFamilyIdentifier::from_wire(ctx, buf)
},
|i| AddressFamilyIdentifier::from_wire(ctx, i),
))))(buf)?;
IResult::Ok((
buf,
Self {
afi_safi_nhafi: tuples,
},
))
}
}
impl Display for ExtendedNextHopEncodingCapability {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
write!(f, "ExtendednextHopEncodingCapability [")?;
for entry in &self.afi_safi_nhafi {
write!(f, "afi: {}, safi: {}, nhafi: {}", entry.0, entry.1, entry.2)?;
}
write!(f, "]")
}
}
#[cfg(test)]
mod tests {
use super::BGPCapability;
use super::BGPCapabilityTypeValues;
use super::BGPCapabilityValue;
use super::ExtendedNextHopEncodingCapability;
use super::FourByteASNCapability;
use super::OpenOption;
use crate::constants::AddressFamilyIdentifier::Ipv6;
use crate::traits::ParserContext;
use crate::traits::ReadablePacket;
#[test]
fn test_four_byte_asn_capability() {
let bytes: &[u8] = &[0x41, 0x04, 0x00, 0x00, 0x00, 0x2a];
let ctx = &ParserContext::default()
.four_octet_asn(true)
.nlri_mode(Ipv6);
let (buf, result) = BGPCapability::from_wire(ctx, bytes).unwrap();
assert_eq!(
result,
BGPCapability {
cap_type: BGPCapabilityTypeValues::FOUR_BYTE_ASN,
val: BGPCapabilityValue::FourByteASN(FourByteASNCapability { asn: 42 })
}
);
assert_eq!(buf.len(), 0);
}
#[test]
fn test_open_options<'a>() {
let option_bytes: &[u8] = &[
0x02, 0x06, 0x01, 0x04, 0x00, 0x01, 0x00, 0x01, 0x02, 0x02, 0x80, 0x00, 0x02, 0x02,
0x02, 0x00, 0x02, 0x02, 0x46, 0x00, 0x02, 0x06, 0x41, 0x04, 0x00, 0x00, 0x00, 0x2a,
];
let ctx = &ParserContext::default()
.four_octet_asn(true)
.nlri_mode(Ipv6);
let (_buf, result) =
nom::multi::many0(|buf: &'a [u8]| OpenOption::from_wire(ctx, buf))(option_bytes)
.unwrap();
let expected_str = "[OpenOption { option_type: BGPOpenOptionType(2), oval: Capabilities(OpenOptionCapabilities { caps: [BGPCapability { cap_type: BGPCapabilityType(1), val: Multiprotocol(MultiprotocolCapability { afi: Ipv4, safi: Unicast }) }] }) }, OpenOption { option_type: BGPOpenOptionType(2), oval: Capabilities(OpenOptionCapabilities { caps: [BGPCapability { cap_type: BGPCapabilityType(128), val: UnknownCapability(UnknownCapability { cap_code: 128, payload: [] }) }] }) }, OpenOption { option_type: BGPOpenOptionType(2), oval: Capabilities(OpenOptionCapabilities { caps: [BGPCapability { cap_type: BGPCapabilityType(2), val: RouteRefresh(RouteRefreshCapability) }] }) }, OpenOption { option_type: BGPOpenOptionType(2), oval: Capabilities(OpenOptionCapabilities { caps: [BGPCapability { cap_type: BGPCapabilityType(70), val: UnknownCapability(UnknownCapability { cap_code: 70, payload: [] }) }] }) }, OpenOption { option_type: BGPOpenOptionType(2), oval: Capabilities(OpenOptionCapabilities { caps: [BGPCapability { cap_type: BGPCapabilityType(65), val: FourByteASN(FourByteASNCapability { asn: 42 }) }] }) }]";
assert_eq!(format!("{:?}", result), expected_str);
}
#[test]
fn test_extended_next_hop_encoding_capability() {
let bytes: Vec<u8> = vec![0x00, 0x01, 0x00, 0x01, 0x00, 0x02];
let ctx = &ParserContext::default()
.four_octet_asn(true)
.nlri_mode(Ipv6);
let (_, cap) = ExtendedNextHopEncodingCapability::from_wire(ctx, &bytes).unwrap();
let expected_str =
"ExtendednextHopEncodingCapability [afi: Ipv4, safi: Unicast, nhafi: Ipv6]";
assert_eq!(expected_str, cap.to_string());
}
}